几何画板如何画二次函数的对称轴
一元二次函数的对称轴求根公式?
一元二次函数的对称轴求根公式?
一元二次方程对称轴的公式:yax2 bx c(a≠0)。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2 bx c0(a≠0)。
对称轴,数学名词,是指使几何图形成轴对称或旋转对称的直线。对称图形的一部分绕它旋转一定的角度后,就与另一部分重合。许多图形都有对称轴。例如椭圆、双曲线有两条对称轴,抛物线有一条。正圆锥或正圆柱的对称轴是过底面圆心与顶点或另一底面圆心的直线。
二次函数定义域推导?
二次函数的定义域为R或任意指定的区间[p,q]
求值域方法(相当于求出在此区间上的最大及最小值):
1)将二次函数配方f(x)a(x-h)^2 c, 得出对称轴xh
2)如果对称轴在区间内,则最大值(a0时)或最小值(a0时)为f(h)c,
另一个最值在区间端点(比较p,q哪个距离h更近,也可以直接比较f(p),f(q)的大小。)
3)如果对称轴不在区间内,则最值都在端点上,比较f(p), f(q), 大的即为最大值,小的即为最小值。
二次函数表达式为yax2 bx c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线开口向上;当a0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左侧;当a与b异号时(即ab0),对称轴在y轴右侧。(可巧记为:左同右异)
常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)
一次项系数b和二次项系数a共同决定对称轴的位置。
当a0,与b同号时(即ab0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以 b/2a要大于0,所以a、b要同号
当a0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a0,b0或a0,b0);当对称轴在y轴右时,a与b异号(即a0或a0,b0)(ab0)。
事实上,b有其自身的几何意义:二次函数图象与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。