数列发散和收敛的判断高等数学 怎样判断数列收敛?

[更新]
·
·
分类:行业
4732 阅读

数列发散和收敛的判断高等数学

怎样判断数列收敛?

怎样判断数列收敛?

具体可以看一下

我大学就是数学专业!
1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得ngtN时,恒有|Xn-a|ltq成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。
2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。
3、加减的时候,把高阶的无穷小直接舍去如 1 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替
4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

怎样理解高数中的发散与收敛?

1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了

数列极限收敛是什么意思?

,数列收敛就是当n趋于正无穷时,这个数列的极限存在,举个例子:
数列a(n)收敛到A,这里A是一个有限数。
它的定义是:数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得ngtN时,恒有|Xn-a|。
数列收敛的性质:
1、唯一性
如果数列xn收敛,每个收敛的数列只有一个极限。
2、有界性
定义:设有数列xn,若存在Mgt0,使得一切自然数n,恒有|Xn|
折叠收敛数列与其子数列间的关系:
子数列也是收敛数列且极限为a恒有Xn|
若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。