黎曼可积和绝对可积哪个条件强
可积性定理?
可积性定理?
函数积分的数学意义就是积分上下限,函数曲线,坐标轴所围成面积的代数和。
所以函数可积等价于所围成的面积可求。所以只要函数曲线是连续的或者有有限个间断点,间断点的函数值存在或其极限存在,也就是说函数图像是有界的,不是无限延伸的,那么此类的函数可积。
可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为黎曼可积(也即黎曼积分存在),或者Henstock-Kurzweil可积,等等。
注意,函数可以有不定积分(反导数),而并不在如下的定义中可积。
如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。即f(x)是[a,b]上的可积函数。
函数可积的充分条件:
定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积和黎曼可积有区别吗?
满足下列条件之一的函数必定可积:
(1) 连续
(2) 不连续,但间断点是第一类的而且只有有限多个。
这就是黎曼可积条件。在勒贝格积分下,以上条件可以继续放宽。
黎曼可积函数必定是连续函数或者只有有限个第一类间断点的函数,这些函数在所有的函数类中不多,实际上构成了一个整个函数空间的疏集。
可积分的函数有什么条件?
可积函数的函数可积的充分条件:
1、函数有界;
2、在该区间上连续;
3、有有限个间断点。
函数可以定义在点集上,更重要的是它提供了比黎曼积分更广泛有效的收敛定理,因此,勒贝格积分的应用领域更加广泛。
勒贝格积分是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是求其函数图像与轴之间的面积。勒贝格积分则将积分运算扩展到其它函数,并且也扩展了可以进行积分运算的函数的范围。
最早对积分运算的定义是对于非负值和足够光滑的函数来说,其积分相当于使用求极限的手段来计算一个多边形的面积。
但是随着对更加不规则的函数的积分运算的需要不断产生(比如为了讨论数学分析中的极限过程,或者出于概率论的需求),很快就产生了对更加广义的求极限手段的要求来定义相应的积分运算。