数学求值域的三种方法
值域的计算方法?
值域的计算方法?
(一)求函数定义域
1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;
2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;
3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;
4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;
5、分段函数的定义域是各个区间的并集;
6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;
7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;
(二)求函数的值域
1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;
2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;
3、分段函数的值域是各个区间上值域的并集;
4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;
5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;
求定义域的五个原则公式?
函数定义域的求法:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x0中,x≠0。
函数定义域的求法
1求解方法
组合函数
由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。
原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x0中,x≠0。
复合函数
若y发(u),ug(x),则yf[g(x)]就叫做f和g的复合函数。其中yf(U)叫做外函数,ug(x)叫做内函数。
例如:(1)已知yf(x)的定义域D1,求yf[g(x)]的定义域D2。
解法:解不等式:g(x)∈D1
(2)已知yf[g(x)]的定义域D1,求yf(x)的定义域D2。
解法:令ug(x),x∈D1,求函数g(x)的值域。
2求函数定义域一般原则
①如果为整式,其定义域为实数集;
②如果为分时,其定义域是是分母不为0的实数集合;
③如果是二次根式(偶次根式),其定义域是使根号内的式子不小于0的实数集合;
④如果是由以上几个部分的数学式子构成的,其定义域是使各个式子都有意义的实数集合。