抽象代数和数值分析技巧
为什么叫抽象代数?
为什么叫抽象代数?
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦(1811 ~ 1832)在1832年运用「群」的概念彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的学科转变为研究代数运算结构的学科,即把代数学由初等代数时期推向抽象代数。
抽象代数包含群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数也是现代计算机理论基础之一。
请问学习拓扑学(点集拓扑、代数拓扑、微分拓扑)要什么基础?
首先,如果你想做数理经济学或者金融工程研究,那么点集拓扑对于你理解数学分析及以后的高层次数学(如在前沿的高级宏观经济学研究中非常重要的泛函分析、金融工程中的随机微分方程理论)是大有裨益、甚至是必不可少的,因而点集拓扑学的功底是判断一个人数学素养的关键。点集拓扑都不知道的话,现代数学你会寸步难行。
在点集拓扑和实分析的基础上,可以学习初步的抽象动力系统,这个在一般均衡理论的研究中有用。
在点集拓扑和抽象代数的基础上,可以学习代数拓扑,在经济学中的运用,参见布劳威尔不动点定理。
博弈论中闻名遐迩的Kakutani不动点定理,还有高级微观经济学中的最大值定理,都是集值分析的主要结果。集值分析的基础是点集拓扑学。
最后,逼格噌噌噌的微分拓扑,其Morse理论的应用(我没用过反正),具体的记得范里安的《微观经济分析》中有提到,但我没有深入研究,只是十分粗浅的知道morse理论讲的是什么。现代一般均衡理论研究用到了微分拓扑的Poincare-Hpof定理。这是我在博士期间阅读国内外数理经济学文献中出现的最高深的数学定理,其数学理论参见《从微分观点看拓扑》,经济学应用参见肯尼斯-阿罗的《数理经济学手册》。还有比如,著名的Mas-Colell的《微观经济理论》中一般均衡的讨论,就使用了Brouwer度
理论和微分拓扑的指数定理(index Theorem)
。可能国内读经济学的几乎
没人会教这个。参见下图。
总之,拓扑学有没有用,还是取决于你的研究方向和方法。
其实现在啊,国外做经济学拓扑的,不动点理论几乎已经被微分拓扑取代了
。