鸡兔同笼问题蕴含的数学思想方法
左传中鸡兔同笼的问题解答?
左传中鸡兔同笼的问题解答?
这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
《孙子算经》上的解法很巧妙,它是按公式:兔数 足数-头数来算的,具体计算是这样的:兔数 (只),鸡数=头数-免数=35-12=23,并且书中还给出了公式的来历:把足数除以2以后,每只鸡只剩下一足,每只兔剩下两足了,减去头数,就相当于每只鸡兔再减去一只,鸡足减完了,剩下的每只兔只有一足了,此时所剩足数恰好等于兔子头数.
鸡兔同笼的公式:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
鸡的只数
总只数-鸡的只数兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
兔的只数
总只数-兔的只数鸡的只数
小学奥数—如何解决鸡兔同笼问题?
解决方法
方法一:假设法(或叫极限法,代替法)
方法基础:
如果用1只兔子代替1只鸡,则多算2只脚
如果用1只鸡代替1只兔子,则少算2只脚
因此有:
(1)假设35个头全是鸡,则
脚应该是35×270(只)
比实际少了94-7024 (只)
每只兔少算了两只脚,因此有兔子:
24÷212 (只)
有鸡 35-1223 (只)
(2)假设35个头全是兔子的,则
脚应该是35×4140 (只)
比实际多了 140-9446 (只)
每只鸡多算了两只脚,因此有鸡:
46÷223 (只)
有兔子 35-2312 (只)
方法二:方程法
假设35只鸡兔中有鸡x只,则有兔子(35-x)只
根据题意有:
2x 4(35-x)94
解得 x23 35-x12
则可得:
有鸡23只,有兔子12只
(同理亦可设兔子x只,鸡(35-x)只)
列方程已知都是非常简单的方法,只要根据题干已知条件,对应写出等式就可以了。由于小学只学了一元一次方程,所以需要注意的是,只有一个未知数的时候,需要用这个未知数写出另外一个变量的表达方法