运筹学解决实际问题的基本步骤
统计运筹学是干什么的?
统计运筹学是干什么的?
运筹学是近代应用数学的一个分支,主要是研究如何将生产、管理等事件中出现的运筹问题加以提炼,然后利用数学方法进行解决的学科。运筹学是应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
运筹学程序化的步骤?
(1)提出和形成问题。即要弄清问题的目标,可能的约束,问题的可控变量以及有关参数,搜集有关资料;
(2)建立模型。即把问题中可控变量、参数和目标与约束之间的关系用一定的模型表示出来;
(3)求解。用各种手段(主要是数学方法,也可用其他方法)将模型求解。解可以是**解、次优解、满意解。复杂模型的求解需用计算机,解的精度要求可由决策者提出;
(4)解的检验。首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;
(5)解的控制。通过控制解的变化过程决定对解是否要作一定的改变;
(6)解的实施。是指将解用到实际中必须考虑到实施的问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改
运筹学的研究思路?
运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。
随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。
运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时, 一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。
虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。
随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。
运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。 比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。