向量的两个基本性质 两个向量组是否相关?

[更新]
·
·
分类:行业
2282 阅读

向量的两个基本性质

两个向量组是否相关?

两个向量组是否相关?

可以通过线性相关的定义入手去判断向量组是否线性相关。令向量组的线性组合为零,研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。
也可以通过线性相关的性质入手去判断:
(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;
(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;
(3)通过向量组的正交性研究向量组的相关性;
(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关;
(5)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。
向量组的概念
在数学与物理中,既有大小又有方向的量叫做向量,向量分为行向量和列向量。而由若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。有限个向量的有序向量组可以与矩阵一一对应,即矩阵由行向量组组成,或列向量组组成。方向相同,大小相等的向量叫做向量组。
线性相关的概念
线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。
例如在三维欧几里得空间R的三个矢量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关;但(2, 1, 1),(1, 0, 1)和(3, 1, 2)线性相关,因为第三个是前两个的和。
线性相关的注意事项
1、对于任一向量组而言,,不是线性无关的就是线性相关的。
2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线
3、包含零向量的任何向量组是线性相关的。
4、含有相同向量的向量组必线性相关。
5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)【局部相关,整体相关】
6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)【整体无关,局部无关】
7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。【无关组的加长组仍无关】
8、一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。【相关组的缩短组仍相关】
9、若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。若行列式为零,则向量组线性相关;否则是线性无关的。

向量的定义和性质?

1 向量的定义:既有大小又有方向的量叫做向量.如物理学中的力,位移,速度等.向量可用字母a,b,c等表示,也可用表示向量的有向线段的起点和终点字母表示(起点写在前面,终点写在后,上面划箭头).
2 向量的模:向量AB的大小(即是向量AB的长度)叫做向量AB的模.
* 向量的模是一个非负实数,是只有大小而没有方向的标量.
3 零向量,单位向量,平行向量,共线向量,相等向量的概念
(1)零向量:长度(模)为零的向量叫零向量,记做0.
*零向量的方向可看做任意方向,规定零向量与任一向量平行.
(2)单位向量:长度(模)为1个单位长度的向量叫做单位向量.
(3)平行向量:方向相同或相反的非零向量叫平行行量.
*因为任一组平行向量都可移到同一直线上,所以平行向量又叫做共线向量.
(4)相等向量:长度相等且方向相同的向量叫做相等向量.