多元函数连续不一定可偏导的例子
二元函数可偏导和极限存在的关系?
二元函数可偏导和极限存在的关系?
多元函数这些性质之间的关系是:可微分是最强 的性质,即可微必然可以推出偏导数存在,必然可以推出连续。
反之偏导数存在与连续之间是不能相互推出的(没有直接关系),即连续多元函数偏导数可以不存在;偏导数都存在多元函数也可以不连续。偏导数连续强于函数可微分,是可微分的充分不必要条件,相关例子可以在数学分析书籍中找到。
偏导数存在可推出偏极限也存在,就是在x不动的情况下y的极限,和y不动的情况下x的极限都存在,但对整体而言f(x、y)在x0、y0的极限、连续、可微,均不充分。
偏导数连续和原函数连续是不同的意思,偏导函数是否连续和原函数是否连续无关。
为什么偏导数存在不一定可微分?
对于一元函数来说,可导和可微是等价的,而对多元函数来说,偏导数都存在,也保证不了可微性,这是因为偏导数仅仅是在特定方向上的函数变化率,它对函数在某一点附近的变化情况的描述是极不完整的.
1,偏导数存在且连续,则函数必可微!
2,可微必可导!
3,偏导存在与连续不存在任何关系其几何意义是:zf(x,y)在点(x0,y0)的全微分在几何上表示曲面在点(x0,y0,f(x0,y0))处切平面上点的竖坐标的增量。
多元函数可导与可微与连续的关系?
可微,偏导数一定存在可微,函数一定连续可导,不一定连续。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的;
可积与连续的关系:可积不一定连续,连续必定可积;
可导与可积的关系:可导一般可积,可积推不出一定可导。
扩展资料:
多元函数的本质是一种关系,是两个集合间一种确定的对应关系。这两个集合的元素可以是数;也可以是点、线、面、体;还可以是向量、矩阵等等。一个元素或多个元素对应的结果可以是唯一的元素,即单值的。也可以是多个元素,即多值的。
人们最常见的函数,以及目前我国中学数学教科书所说的“函数”,除有特别注明者外,实际上(全称)是一元单值实变函数。
例如,某种商品的市场需求量不仅仅与其市场价格有关,而且与消费者的收入以及这种商品的其它代用品的价格等因素有关,即决定该商品需求量的因素不止一个而是多个。要全面研究这类问题,就需要引入多元函数的概念。