初中数学有哪些定理及二级结论 初中数学定义定理公式总结语文?

[更新]
·
·
分类:行业
4265 阅读

初中数学有哪些定理及二级结论

初中数学定义定理公式总结语文?

初中数学定义定理公式总结语文?

答:定义是经过多次实践得出的结论,定理和公式是经过充分的推理论证得出的结论

定理逆定理有哪些?

直角三角形中,两直角边的平方和等于斜边的平方。(勾股定理)其逆定理:如果一个三角形两直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。这就是一对典型的互逆定理。
逆定理是将某一定理的条件和结论互换所得命题也是一个定理,那互换之后的定理就是原来定理的逆定理。(即如果一个定理的逆命题能被证明为真命题,那么它叫做原定理的逆定理)。此时,这两个定理叫互逆定理。

牛顿第二定律二级结论?

牛顿第二运动定律 Newton#39s second law of motion 1.定律内容:物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。
即动量对时间的一阶导数等于外力之和。
牛顿第二定律说明了在宏观低速下,∑F∝a,∑F∝m,用数学表达式可以写成∑Fkma,其中的k是一个常数。
但由于当时没有规定1个单位的力的大小,于是取k1,就有∑Fma,这就是今天我们熟悉的牛顿第二定律的表达式。

定理的证明方法?

证明定理的方法主要归纳为以下几种:
1)直接证明:通过证明当 p 为真时 q 必然为真而进行的对 p-gtq 的证明。
2)反证法:反证法是一种间接证明方法,利用条件语句 p-gtq 等价于它的倒置 ¬q-gt¬p 的事实,换句话说,就是通过证明 q 是假时 p 一定是假来证明 p-gtq 为真。当不容易找到直接证明时用反证会很有效。在反证中,要假设条件语句的结论为假,并使用直接证明法表明这意味着前提必为假。
3)归谬证明:归谬证明也是一种间接证明方法,假设我们想证明 p 是真的,假定可以找到矛盾式 q 使得 ¬p-gtq 为真,因为 q 是假的,¬p-gtq 为真,我们能够得出 ¬p 必然为假,这意味着 p 为真。这样我们的目标就变成了如何寻找矛盾式 q,以此来帮助我们证明 p 为真。因为无论 r 是什么命题,r ^ ¬r 都是矛盾式。也就是说,如果我们能够证明对某个命题 r,¬p-gt( r ^ ¬r ) 为真时,就能证明 p 是真的。这种类型的证明称为归谬证明。
归谬也能够用于证明条件语句。在这样的证明中,首先假设结论的否定。然后应用定理前提和结论否定得到一个矛盾式。因此可以把条件语句的反证改写成归谬证明。
4)穷举证明:通过检查一系列的所有情况所建立的结果得到的证明。
5)分情形证明:把情况分解为覆盖所有可能的单独情况的证明。一个穷举证明是分情形证明的特殊类型。
6)不失一般性:假定一个证明可以通过减少需要证明的情形来证明的一个法则。也就是通过证明定理的其中一种情况,其它的一系列情况通过简单的变化来论证。
7)反例:使得P(x)为假的元素x。
8)构造性的存在性证明:证明具有特定性质的元素存在,通过显示地方式来寻找这样的元素。
9)非构造性的存在性证明:证明具有特定性质的元素存在,但不是显示地寻找这样的元素。给出非构造性证明的一种普通方法是使用归谬证明。
10)唯一性证明:证明具有特定性质的元素唯一地存在。
此外,还有许多重要的证明方法有:数学归纳法、康托尔对角化方法、计数论证方法等。这里不做过多的阐述。