物理学的运动的基本知识 运动和静止的名词解释?

[更新]
·
·
分类:行业
1252 阅读

物理学的运动的基本知识

运动和静止的名词解释?

运动和静止的名词解释?

静止是指对某一参照系,事物没有发生特定的变化或事物的根本性质不变。
运动是物质的存在和固有属性。它包括宇宙间的一切变化和过程。
运动与静止密不可分,运动是绝对的,静止是相对的;静止是运动的特殊状态;动中有静,静中有动;任何事物都是运动和静止的统一。

大学物理和普通物理学的区别?

大学物理是非物理专业所学的物理课程,而普通物理学是物理专业所学的力热光电四门课程,相比之下大学物理的难度没有普通物理学的难度大,但比高中物理难很多。
物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
大学物理是大学理工科类的一门基础课程,通过课程的学习,使学生熟悉自然界物质的结构,性质,相互作用及其运动的基本规律,为后继专业基础与专业课程的学习及进一步获取有关知识奠定必要的物理基础。但工科专业以力学基础和电磁学为主要授课。
普通物理学着重介绍各种物理现象和基本的物理方法,大部分内容属于经典物理学的范围。其脉络主要是根据人们对日常生活现象的常识性划分。日常生活中的物理现象一般被分为“力、热、声、光、电、磁”等,普通物理也相应分为经典力学(含声学)、热学、电磁学和光学。普通物理学的许多基础概念在中学就已经引入。但大学中的科学和工程科目一般都要求系统的学习普通物理学。
高中物理完全可以被视为大学普通物理学的简化和缩略,只不过高中的物理仅仅利用初等数学加以研究。

台球中的物理知识有哪些?

台球简介:
台球源于英国,它是一项在国际上广泛流行的高雅室内体育运动。 是一种用球杆在台上
击球、依靠计算得分确定比赛胜负的室内娱乐体育项目。台球也叫桌球(港澳的叫法)、撞球(台湾的叫法)。台球是一种用球杆在台上击球、依靠计算得分确定比赛胜负的室内娱乐。
从物理学角度来说,台球就是利用碰撞的一种游戏。主要体现在物理力学。主要是动量
守恒定律。 每个球质量都一样就不考虑了。 最开始击打的那个球的速度平方等于击球之后所有球各自的速度平方和。角度很重要,球的自旋方式也有讲究。
偏离比例与三角函数:
偏离比例:定位瞄准点的方法 “半球法”固然是一切瞄准方法的基础,却不怎么具有实际操作性。
瞄准
所谓瞄准点,就是当你击出母球时,球杆尖所对的方向, 而瞄准点与母球的接触部份就
称为接触点。 当母球击中目标球时,目标球就会往击中那一瞬间两球中心点连线的延伸方向前进。 如果这一条联线的延伸正好对著球袋, 则目标球就会不偏不倚的落入球袋中。 因为如果这一条延伸线正对着球袋, 就表示当母球击中目标球时, 母球、 目标球与球袋正好在一直线上,而力量来源就是延伸线上的母球与目标球的接触点。 不过我们在前面也提到球与球袋很少同时在一条直线上。 因此,我们可以将这一条 联结中心点的延长线 运用在基本的聚球技术上,而发展出可以将目标球击落球袋的技术。再说得详细一点, 就是如果我们要轻易地找出目标球上的正确瞄准点, 就必须先在脑中描绘出你所想要击落的目标球与球袋之间, 有一条中心点至中心点的联线, 而这一条假想线与目标球外围的切点,就是最理想的瞄准点。
二、旋转球的走位 :
1.低杆
大家都知道当击球点在中点下面的时候,母球击打到了目标球后会往后退,一般来说,击球点越下,退得就越多。当然, 仅仅这一点是不够的,还得配合上角度。 (角度是指球杆有球桌面的夹角) ,那么加多少角度才合适呢?加了角度以后, 母球又会怎么走呢?应该加多大的力度来配合呢?这里就有一个力度的合成和衰减的问题了。
A:当母球击打的是目标球的正中的时候, 若力度的衰减不大, 那么角度越大退得就更远;若力度衰减较大,那么旋转的衰减也相应较大,这个时候,就算是加上大角度也会因为旋转的衰减而退不动了。实战中是这样的:近球加大角度退得较远,远球加角度一般在三十度左右退得较远 ( 这里是指的全退 大力而言, 若不是全退, 那么角度会有相应的变化, 击球点越 * 近中点角度相应要调大一点 )
B:当母球击打的是目标球的侧面的时候, 角度是以45度为分界的。 具体的理论如下:母球击打目标球以后, 全退加45度角, 若无力度的衰减, 母球会向两球的中心连线方向反弹,角度小于45度,会向母球前进的方向偏出,大于45度,会向反方向偏出,击球点偏向中心点越近,偏出就越大,力度衰减越大,向母球前进方向偏出就越大 。退的力度会因为击球点的不同而不同的, 击球点越薄, 反弹的分力越小, 退得就自然不远,越厚就越远,当然有力度的衰减相应退得就不够远,这个大家可以细细去体会。
2.高杆
当击球点在母球的中点上面的时候, 母球击打到了目标球以后, 会往前跟, 击球点越上,跟得就越多。
A:击打目标球的正中的时候,角度的大小和力度的衰减原理同上,这里不再缀述。
B:当母球击打的是目标球的侧面的时候, 全跟加角度, 母球就会向切线的角度方向前进,举个例子: 全跟加三十度,那么母球前进的方向就是和切线的三十度角。当然这里还得考虑力度的衰减和磨擦力,会有小小的偏差。
C:若目标球的前方还有一个球挡住,由于那个球的反弹,而你现在又是加的大角度,跟进的速度较快, 就会有两次击球的机会, 这就是为什么两个相贴的球会在加大角度的情况下两个球都一起进的原因,大家可以在实战中去体会。
3.偏杆
当击球点在中点的左边或是右边的时候, 母球碰到库边会向相应的方向反弹。 击球点偏左的时候, 碰到库边就会向左边跑, 击球点偏右的时候同理由于是碰到库边有个反弹力, 再加上偏杆让球产生旋转和库边的产生的磨擦力, 这个时候母球走的方向就是两个力的合成的方向, 这里同样有个力度的衰减的问题, 基本原理同上面的旋转相同。 所以这就是为什么加大角度有时候反而没有加小角度碰到库边反弹的角度大的道理。 所以, 打偏杆的时候, 你可以试试加大力再加小角度的偏杆,会有惊人的偏转。因为没有具体的参数可以对比, 而我对这个也只能凭经验, 这里就不作理论上的阐述了。
4.勾球
勾球是指母球碰到库边反弹再击打目标球的击球方法。
A:基本理论是入射角等于反射角。 在这里要说明的是, 反弹的线是按和库边相差半个
球位来计算的。
B:当母球吃库反弹的时候 ( 即碰库边反弹) ,高杆和低杆会有所衰减, 但是还是能跟进和退回,所以勾球的时候,是可以加上高低杆的
C:高低杆和偏杆的结合
高偏杆吃库后碰到目标球会按目标球前进的方向跟进
低偏杆吃库后碰到目标球会按目标球前进的反方向反弹
三、物理学中的碰撞 :
物理学中的碰撞分为完全弹性碰撞和非完全弹性碰撞两类。 所谓完全弹性碰撞就是理想化的碰撞——在碰撞中没有能量损失。 平时我们将那些材质较硬的物体间的碰撞均近似地视为完全弹性碰撞,譬如钢球之间、玻璃球之间、钢球与硬质地面之间等。非完全弹性碰撞就存在有能量损失, 这也是我们常见的碰撞类型。 在发生非完全弹性碰撞时, 若发生碰撞的两个物体在碰撞后粘连在一起,这种碰撞称为完全非弹性碰撞,其能量损失属于最大的。无论是完全弹性碰撞, 还是非完全弹性碰撞, 它们均遵循动量守恒定律。 动量守恒定律较之牛顿运动定律的适用范围更广, 它除了适用于宇宙星体间的相互作用, 也适用于微观世界中基本粒子之间的相互作用。
两个物体发生碰撞,有(对心)正碰和斜碰两种形式。对台球来说,在击打过程中,根据主球与目标球的位置不同,基本都是采用正碰和斜碰的击打方式。在斜碰的击打方式中,还要根据需要选择主球与目标球碰撞时的角度θ,这是打台球必须掌握的技巧。
碰撞现象发生在很多体育项目之中, 譬如跑步——脚与地面的蹬踏; 跳高、 跳远——脚与地面的蹬踏; 足球——脚与足球之间的撞击; 篮球——运球时球与地面的碰撞及球与篮板撞击而入筐; 排球——手与排球的直接撞击而形成垫球或扣球; 羽毛球——球与球拍之间的撞击;乒乓球、网球除了球与球拍之间的撞击,还有球与桌(地)面之间的碰撞;??。打台球中碰撞更为明显, 除了主球与目标球之间的碰撞外, 还有球杆与主球的击打, 目标球与台球桌边缘的碰撞。若掌握不好碰撞规律,那么台球肯定是打不好的。
与打台球直接有关的碰撞规律 :
下面我们分别来研究一下在打台球中,出现主球与目标球正碰或斜碰的情况:
以下取一种简单情况为例来分析——目标球原为静止的。设主球的质量为 m1,击打后的速度为 V1,目标球的质量为 m2,碰撞后主球的速度为 V1',目标球的速度为 V2'。
第一种情况:正碰
一.若发生完全弹性正碰——碰撞过程中能量与动量均守恒。
对以上解出的答案进行一下讨论:
若 m1 gtgt m2 ,则碰撞后 m1的速度基本不变,而 m2则以 m1原两倍的速度向前运动;
若 m1 gt m2,则碰撞后 m1的速度减小,而 m2则以较大的速度开始向前运动;
若 m1 = m2,则碰撞后速率交换,即 m1静止, m2以 m1原有的速度运动。台球的主球与目标球的质量是相同的, 若采用一般击打方式, 应出现主球静止, 目标球则以主球原有速度运动(速率交换)。若球杆击打主球的位置不在目标球的中部,偏上或偏下击打,主球会发生旋转,碰撞后则会出现主球后退或主球继续向前运动的情况。
若 m1 lt m2,则碰撞后 m1反向运动,而 m2则以较大的速度开始向前运动;
若 m1 ltlt m2,则碰撞后 m1以较大的速度反向运动,而 m2则基本不动。这相当于一个
球撞墙一样。
若 m1、m2、 v1 已知,完全可以根据以上公式来计算碰撞后的 V1'、V2'。以上五种情况的讨论,只是为了说明有关碰撞的规律,对于打台球来说,发生的应只是第三种情况。
二.若发生一般正碰——碰撞过程中动量守恒, 但能量不守恒。 也可以按照以上五种情况来讨论,由于碰撞中存在能量损失,因此碰撞后各自的速度大小都会较弹性碰撞为小。涉及碰撞,必然要说说“恢复系数” e。直白地解释,恢复系数是反映碰撞中能量损失情况的一个物理量——若 e=1,则为完全弹性碰撞,没有能量损失;若 e=0,则为完全非弹性碰撞,能量损失最大;若 0 lt e lt 1 ,则为非完全弹性碰撞,有能量损失。
实验证明, 对于材料一定的两个球, 碰撞前相互接近的速度越大, 碰撞后分离的速度也越大,而且是成正比的,即其中 v1、v2 分别为碰撞前两球的速度, v10、v20 为碰撞后两球的速度,比例系数 e 就称为恢复系数,它由两个球的材料性质决定。
第二种情况:斜碰
先讨论完全弹性斜碰,建立直角坐标系。设主球沿 Y轴正方向以 V的速度斜碰目标球,碰撞前两球的球心连线与 X轴夹角为θ。 在发生斜碰时, 若θ角较大时, 在击打后两球分离角度较小;若θ角较小时,在击打后两球分离角度就较大。
以两球为系统, 则满足动量守恒、 能量守恒。 设碰撞后, 主球 X方向的速度分量为 V1X,目标球 X方向的速度分量为 V2X;主球 Y方向的速度分量为 V1Y,目标球 Y方向的速度分量为 V2Y。联立可求解出 V1X、V1Y、V2X、V2Y。若为非完全弹性斜碰,则碰后 V1X、V1Y、V2X、V2Y的大小较完全弹性斜碰为小。
下面讨论目标球与台球桌边的碰撞,设为完全弹性碰撞。目标球以速度 V1 并与桌边缘夹角α发生完全弹性碰撞,由于没有能量损失,对速度可作以下分析,速度 V1 分解为垂直桌边缘的 V1X和沿着桌边缘的 V1Y;发生碰撞时, V1X大小不变、方向反向为 V2X,V1Y大小与方向不变( V2Y);V1X、 V2Y的合速度即为 V2。这样目标球与桌边缘碰撞后反弹,速度大小不变,其角度满足θ 1 θ2,这与光线斜射到镜面上发生反射的规律一样。我们常看到台球玩者在准备打这种球时,常沿着桌子转圈在比划,就是在作反弹的测量。
通过以上介绍,你对台球运动中包含的物理知识是否多了些了解? ! 你也可以去试试打一下,强身健体还充满乐趣。